Like other animals, humans use their legs like springs to save energy during running. One potential contributor to leg stiffness in humans is the longitudinal arch (LA) of the foot. Studies of cadaveric feet have demonstrated that the LA can function like a spring, but it is unknown whether humans can adjust LA stiffness in coordination with more proximal joints to help control leg stiffness during running. Here, we used 3D motion capture to record 27 adult participants running on a forceplate-instrumented treadmill, and calculated LA stiffness using beam bending and midfoot kinematics models of the foot. Because changing stride frequency causes humans to adjust overall leg stiffness, we had participants run at their preferred frequency and frequencies 35% above and 20% below preferred frequency to test for similar adjustments in the LA. Regardless of which foot model we used, we found that participants increased LA quasi-stiffness significantly between low and high frequency runs, mirroring changes at the ankle, knee and leg overall. However, among foot models, we found that the model incorporating triceps surae force into bending force on the foot produced unrealistically high LA work estimates, leading us to discourage this modeling approach. Additionally, we found that there was not a consistent correlation between LA height and quasi-stiffness values among the participants, indicating that static LA height measurements are not good predictors of dynamic function. Overall, our findings support the hypothesis that humans dynamically adjust LA stiffness during running in concert with other structures of the leg.
CITATION STYLE
Holowka, N. B., Richards, A., Sibson, B. E., & Lieberman, D. E. (2021). The human foot functions like a spring of adjustable stiffness during running. Journal of Experimental Biology, 224(1). https://doi.org/10.1242/jeb.219667
Mendeley helps you to discover research relevant for your work.