Annatto (Bixa orellana) δ-TCT supplementation protection against embryonic malformations through alterations in PI3K/akt-cyclin D1 pathway

4Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Protective action by annatto-derived delta-tocotrienol (δ-TCT) and soy-derived alpha-tocopherol (α-TOC) through the regulation of the PI3K/Akt-cyclin D1 pathway against nicotine-induced DNA damage is the focus of the present study. Nicotine, which has been widely reported to have numerous adverse effects on the reproductive system, was used as a reproductive toxicant. 48 female balb/c mice (6–8 weeks) (23–25 g) were randomly divided into eight groups (Grp.1–Grp.8; n = 6) and treated with either nicotine or/and annatto δ-TCT/soy α-TOC for seven consecutive days. On Day 8, the females were superovulated and mated before euthanization for embryo collection (46 h post-coitum). Fifty 2-cell embryos from each group were used in gene expression analysis using Affymetrix QuantiGene Plex2.0 assay. Findings indicated that nicotine (Grp.2) significantly decreased (p < 0.05) the number of produced 2-cell embryos compared to the control (Grp.1). Intervention with mixed annatto δ-TCT (Grp.3) and pure annatto δ-TCT (Grp.4) significantly increased the number of produced 2-cell embryos by 127% and 79%, respectively compared to Grp.2, but these were lower than Grp.1. Concurrent treatment with soy α-TOC (Grp.5) decreased embryo production by 7%. Supplementations with δ-TCT and α-TOC alone (Grp.6-Grp.8) significantly increased (p < 0.05) the number of produced 2-cell embryos by 50%, 36%, and 41%, respectively, compared to control (Grp.1). These results were found to be associated with alterations in the PI3K/Akt-Cyclin D1 genes expressions, indicating the inhibitory effects of annatto δ-TCT and soy α-TOC against nicotinic embryonic damage. To our knowledge, this is the first attempt in studying the benefits of annatto δ-TCT on murine preimplantation 2-cell embryos.

Cite

CITATION STYLE

APA

Mutalip, S. S. M., Rajikin, M. H., Rahim, S. A., & Khan, N. M. N. (2019). Annatto (Bixa orellana) δ-TCT supplementation protection against embryonic malformations through alterations in PI3K/akt-cyclin D1 pathway. Biomolecules, 9(1). https://doi.org/10.3390/biom9010019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free