SARS-CoV-2 RNA identification in nasopharyngeal swabs: Issues in pre-analytics

43Citations
Citations of this article
84Readers
Mendeley users who have this article in their library.

Abstract

Objectives: The direct identification of SARS-CoV-2 RNA in nasopharyngeal swabs is recommended for diagnosing the novel COVID-19 disease. Pre-analytical determinants, such as sampling procedures, time and temperature storage conditions, might impact on the end result. Our aim was to evaluate the effects of sampling procedures, time and temperature of the primary nasopharyngeal swabs storage on real-time reverse-transcription polymerase chain reaction (rRT-PCR) results. Methods: Each nasopharyngeal swab obtained from 10 hospitalized patients for COVID-19 was subdivided in 15 aliquots: five were kept at room temperature; five were refrigerated (+4 °C); five were immediately mixed with the extraction buffer and refrigerated at +4 °C. Every day and for 5 days, one aliquot per condition was analyzed (rRT-PCR) for SARS-CoV-2 gene E and RNaseP and threshold cycles (Ct) compared. To evaluate manual sampling, 70 nasopharyngeal swabs were sampled twice by two different operators and analyzed separately one from the other. Results: A total of 6/10 swabs were SARS-CoV-2 positive. No significant time or storage-dependent variations were observed in SARS-CoV-2 Ct. Re-sampling of swabs with SARS-CoV-2 Ct lower than 33 resulted in highly reproducible results (CV=2.9%), while a high variability was observed when Ct values were higher than 33 (CV=10.3%). Conclusions: This study demonstrates that time and temperature of nasopharyngeal swabs storage do not significantly impact on results reproducibility. However, swabs sampling is a critical step, and especially in case of low viral load, might be a potential source of diagnostic errors.

Cite

CITATION STYLE

APA

Basso, D., Aita, A., Navaglia, F., Franchin, E., Fioretto, P., Moz, S., … Plebani, M. (2020). SARS-CoV-2 RNA identification in nasopharyngeal swabs: Issues in pre-analytics. Clinical Chemistry and Laboratory Medicine, 58(9), 1579–1586. https://doi.org/10.1515/cclm-2020-0749

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free