Currently, the use of synthetic pesticides is the main method of plant protection applied in agri- and horticulture. However, its excessive use leads to the development of pesticide resistance, a contamination of the environment, toxicity to non-target organisms, and risks for human health. With the ultimate aim of contributing to the develop of a more sustainable pest management, we used the natural product germacrone (compound1), reported to possess significant insecticidal activity, as starting material for the generation of molecular diversity (2-24). Some of the generated derivatives are natural compounds, such as 1,10-epoxygermacrone (2), 4,5-epoxygermacrone (3), gajutsulactone A (7), germacrol (11), isogermacrone (14), 9-hydroxyeudesma-3,7(11)dien-6-one (19), eudesma-4,7(11),dien-8-one (20), eudesma-3,7(11)-dien-8-one (21) and eudesma-4(15),7(11)-dien-8-one (22). Compounds, 7,11-9,10-diepoxigermacr-4,5-en-8-ol (17), 7,11-epoxieudesma-4,7(11)-dien-8-one (23) and 7,11-epoxieudesma-3,7(11)-dien-8-one (24) are described for the first time. The biocidal activity of most of these compounds was assayed against the tick Hyalomma lusitanicum. The acaricidal effects of compound 24 were four times higher than that of germacrone (1). Compound 2 is an insect antifeedant a thousand times more potent than germacrone against Rhopalosiphum padi, which makes this substance a promising selective antifeedant against this cereal pest.
CITATION STYLE
Galisteo Pretel, A., Pérez Del Pulgar, H., Guerrero de León, E., López-Pérez, J. L., Olmeda, A. S., Gonzalez-Coloma, A., … Quílez Del Moral, J. F. (2019). Germacrone Derivatives as new Insecticidal and Acaricidal Compounds: A Structure-Activity Relationship. Molecules (Basel, Switzerland), 24(16). https://doi.org/10.3390/molecules24162898
Mendeley helps you to discover research relevant for your work.