Novel reverse radioisotope labelling experiment reveals carbon assimilation of marine calcifiers under ocean acidification conditions

6Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ocean acidification by anthropogenic carbon dioxide emissions is projected to depress metabolic and physiological activity in marine calcifiers. To evaluate the sensitivity of marine organisms against ocean acidification, the assimilation of nutrients into carbonate shells and soft tissues must be examined. We designed a novel experimental protocol, reverse radioisotope labelling, to trace partitioning of nutrients within a single bivalve species under ocean acidification conditions. Injecting CO2 gas, free from radiocarbon, can provide a large contrast between carbon dissolved in the water and the one assimilated from atmosphere. By culturing modern aquifer organisms in acidified seawater, we were able to determine differences in the relative contributions of the end members, dissolved inorganic carbon (DIC) in seawater and metabolic CO2, to shell carbonate and soft tissues. Under all pCO2 conditions (463, 653, 872, 1,137 and 1,337 μatm), radiocarbon (Δ14C) values of the bivalve Scapharca broughtonii shell were significantly correlated with seawater DIC values; therefore, shell carbonate was derived principally from seawater DIC. The Δ14C results together with stable carbon isotope (δ13C) data suggest that in S. broughtonii shell δ13C may reflect the kinetics of isotopic equilibration as well as end-member contributions; thus, care must be taken when analysing end-member contributions by a previous method using δ13C. The insensitivity of S. broughtonii to perturbations in pCO2 up to at least 1,337 µatm indicates that this species can withstand ocean acidification. Usage of radioisotope to dope for tracer experiments requires strict rules to conduct any operations. Yet, reverse radioisotope labelling proposing in this study has a large advantage and is a powerful tool to understanding physiology of aquifer organisms that can be applicable to various organisms and culture experiments, such as temperature, salinity and acidification experiments, to improve understanding of the proportions of nutrients taken in by marine organisms under changing environments.

Cite

CITATION STYLE

APA

Nishida, K., Chew, Y. C., Miyairi, Y., Hirabayashi, S., Suzuki, A., Hayashi, M., … Yokoyama, Y. (2020). Novel reverse radioisotope labelling experiment reveals carbon assimilation of marine calcifiers under ocean acidification conditions. Methods in Ecology and Evolution, 11(6), 739–750. https://doi.org/10.1111/2041-210X.13396

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free