Recent technological advances in sequencing DNA and RNA modifications using high-throughput platforms have generated vast epigenomic and epitranscriptomic datasets whose power in transforming life science is yet fully unleashed. Currently available in silico methods have facilitated the identification, positioning and quantitative comparisons of individual modification sites. However, the essential challenge to link specific ‘epi-marks’ to gene expression in the particular context of cellular and biological processes is unmet. To fast-track exploration, we generated epidecodeR implemented in R, which allows biologists to quickly survey whether an epigenomic or epitranscriptomic status of their interest potentially influences gene expression responses. The evaluation is based on the cumulative distribution function and the statistical significance in differential expression of genes grouped by the number of ‘epi-marks’. This tool proves useful in predicting the role of H3K9ac and H3K27ac in associated gene expression after knocking down deacetylases FAM60A and SDS3 and N6-methyl-adenosine-associated gene expression after knocking out the reader proteins. We further used epidecodeR to explore the effectiveness of demethylase FTO inhibitors and histone-associated modifications in drug abuse in animals. epidecodeR is available for downloading as an R package at https://bioconductor.riken.jp/packages/3.13/bioc/html/epidecodeR.html.
CITATION STYLE
Joshi, K., & Wang, D. O. (2024). epidecodeR: a functional exploration tool for epigenetic and epitranscriptomic regulation. Briefings in Bioinformatics, 25(2). https://doi.org/10.1093/bib/bbad521
Mendeley helps you to discover research relevant for your work.