The effects of L-glutamate and insulin on glycogen synthesis in astrocytes were examined. L-Glutamate and insulin both stimulated glycogen synthesis in primary cultures of rat astrocytes in a dose-dependent manner, as measured by the incorporation of 14C from [14C]glucose into glycogen. D-Aspartate also increased the incorporation of 14C into glycogen. When insulin and L-glutamate were added together, the glycogen synthesis as well as glycogen content of the cells was additively increased. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had little effect on glycogen synthesis induced by L-glutamate, whereas it suppressed the insulin-induced glycogen synthesis. These results suggest that the insulin- and L-glutamate- induced glycogen syntheses are mediated by different intracellular mechanisms. In fact, insulin stimulated the conversion of glycogen synthase b to glycogen synthase a, which was suppressed by wortmannin. L-Glutamate and D-aspartate, however, did not increase the level of glycogen synthase a activity. By contrast, L-glutamate increased 2-deoxy-D-[3H]glucose uptake by the astrocytes, whereas insulin did not affect the uptake. These results suggest that insulin stimulates glycogen synthesis in astrocytes by activating glycogen synthase, which is dependent on a wortmannin-sensitive signaling pathway. L-Glutamate, however, enhances the glucose uptake, which contributes to the increase in glycogen synthesis in the cells.
CITATION STYLE
Hamai, M., Minokoshi, Y., & Shimazu, T. (1999). L-glutamate and insulin enhance glycogen synthesis in cultured astrocytes from the rat brain through different intracellular mechanisms. Journal of Neurochemistry, 73(1), 400–407. https://doi.org/10.1046/j.1471-4159.1999.0730400.x
Mendeley helps you to discover research relevant for your work.