Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys

14Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. We perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects are ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters.

Cite

CITATION STYLE

APA

Zarkadoula, E., Samolyuk, G., & Weber, W. J. (2017). Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys. Journal of Alloys and Compounds, 700, 106–112. https://doi.org/10.1016/j.jallcom.2016.12.441

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free