Wearable activity monitors to assess performance status and predict clinical outcomes in advanced cancer patients

112Citations
Citations of this article
176Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

An objective evaluation of patient performance status (PS) is difficult because patients spend the majority of their time outside of the clinic, self-report to providers, and undergo dynamic changes throughout their treatment experience. Real-time, objective activity data may allow for a more accurate assessment of PS and physical function, while reducing the subjectivity and bias associated with current assessments. Consenting patients with advanced cancer wore a wearble activity monitor for three consecutive visits in a prospective, single-cohort clinical trial. Provider-assessed PS (ECOG/Karnofsky) and NIH PROMIS® patient-reported outcomes (PROs) were assessed at each visit. Associations between wearable activity monitor metrics (steps, distance, stairs) and PS, clinical outcomes (adverse events, hospitalizations, survival), and PROs were assessed using correlation statistics and in multivariable logistic regression models. Thirty-seven patients were evaluated (54% male, median 62 years). Patients averaged 3700 steps, 1.7 miles, and 3 flights of stairs per day. Highest correlations were observed between average daily steps and ECOG-PS and KPS (r = 0.63 and r = 0.69, respectively p < 0.01). Each 1000 steps/day increase was associated with reduced odds for adverse events (OR: 0.34, 95% CI 0.13, 0.94), hospitalizations (OR: 0.21 95% CI 0.56, 0.79), and hazard for death (HR: 0.48 95% CI 0.28–0.83). Significant correlations were also observed between activity metrics and PROs. Our trial demonstrates the feasibility of using wearable activity monitors to assess PS in advanced cancer patients and suggests their potential use to predict clinical and patient-reported outcomes. These findings should be validated in larger, randomized trials.

Cite

CITATION STYLE

APA

Gresham, G., Hendifar, A. E., Spiegel, B., Neeman, E., Tuli, R., Rimel, B. J., … Shinde, A. M. (2018). Wearable activity monitors to assess performance status and predict clinical outcomes in advanced cancer patients. Npj Digital Medicine, 1(1). https://doi.org/10.1038/s41746-018-0032-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free