Local Integration Accounts for Weak Selectivity of Mouse Neocortical Parvalbumin Interneurons

29Citations
Citations of this article
231Readers
Mendeley users who have this article in their library.

Abstract

Dissecting the functional roles of excitatory and inhibitory neurons in cortical circuits is a fundamental goal in neuroscience. Of particular interest are their roles in emergent cortical computations such as binocular integration in primary visual cortex (V1). We measured the binocular response selectivity of genetically defined subpopulations of excitatory and inhibitory neurons. Parvalbumin (PV+) interneurons received strong inputs from both eyes but lacked selectivity for binocular disparity. Because broad selectivity could result from heterogeneous synaptic input from neighboring neurons, we examined how individual PV+ interneuron selectivity compared to that of the local neuronal network, whichisprimarily composed of excitatory neurons. PV+ neurons showed functional similarity to neighboring neuronal populations over spatial distances resembling measurements of synaptic connectivity. On the other hand, excitatory neurons expressing CaMKIIα displayed no such functional similarity with the neighboring population. Our findings suggest that broad selectivity of PV+ interneurons results from nonspecific integration within local networks. Video Abstract: Excitatory and inhibitory neurons integrate local neocortical inputs differently. Parvalbumin (PV+) inhibitory neurons exhibit functional responses similar to the neighboring neurons consistent with nonspecific pooling within 100μm, whereas excitatory neuron selectivity is unrelated to the local population.

Cite

CITATION STYLE

APA

Scholl, B., Pattadkal, J. J., Dilly, G. A., Priebe, N. J., & Zemelman, B. V. (2015). Local Integration Accounts for Weak Selectivity of Mouse Neocortical Parvalbumin Interneurons. Neuron, 87(2), 424–436. https://doi.org/10.1016/j.neuron.2015.06.030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free