CFD has gained significant attention as a tool to model aortic hemodynamics. However, obtaining accurate patient-specific boundary conditions still poses a major challenge and represents a major source of uncertainties, which are difficult to quantify. This study presents an attempt to quantify these uncertainties by comparing 14 patient-specific simulations of the aorta (reference method), each exhibiting stenosis, against simulations using the same geometries without the branching vessels of the aortic arch (simplified method). Results were evaluated by comparing pressure drop along the aorta, secondary flow degree (SFD) and surface-averaged wall shear stress (WSS) for each patient. The comparison shows little difference in pressure drop between the two methods (simplified-reference) with the mean difference being 1.2 mmHg (standard deviation: 3.0 mmHg). SFD and WSS, however, show striking differences between the methods: SFD downstream of the stenosis is on average 61 % higher in the simplified cases, while WSS is on average 3.0 Pa lower in the simplified cases. Although unphysiological, the comparison of both methods gives an upper bound for the error introduced by uncertainties in branching vessel boundary conditions. For the pressure drop this error appears to be remarkably low, while being unacceptably high for SFD and WSS.
CITATION STYLE
Yevtushenko, P., Hellmeier, F., Bruening, J., Kuehne, T., & Goubergrits, L. (2017). Numerical investigation of the impact of branching vessel boundary conditions on aortic hemodynamics. In Current Directions in Biomedical Engineering (Vol. 3, pp. 321–324). Walter de Gruyter GmbH. https://doi.org/10.1515/cdbme-2017-0066
Mendeley helps you to discover research relevant for your work.