Nonlinear beam shaping refers to spatial reconfiguration of a light beam at a new frequency, which can be achieved by using nonlinear photonic crystals (NPCs). Direct nonlinear beam shaping has been achieved to convert second-harmonic waves into focusing spots, vortex beams, and diffraction-free beams. However, previous nonlinear beam shaping configurations in one-dimensional and two-dimensional (2D) NPCs generally suffer from low efficiency because of unfulfilled phase-matching condition. Here, we present efficient generations of second-harmonic vortex and Hermite-Gaussian beams in the recently-developed three-dimensional (3D) lithium niobate NPCs fabricated by using a femtosecond-laser-engineering technique. Since 3D χ(2) modulations can be designed to simultaneously fulfill the requirements of nonlinear wave-front shaping and quasi-phase-matching, the conversion efficiency is enhanced up to two orders of magnitude in a tens-of-microns-long 3D NPC in comparison to the 2D case. Efficient nonlinear beam shaping paves a way for its applications in optical communication, super-resolution imaging, high-dimensional entangled source, etc.
CITATION STYLE
Wei, D., Wang, C., Xu, X., Wang, H., Hu, Y., Chen, P., … Xiao, M. (2019). Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12251-0
Mendeley helps you to discover research relevant for your work.