Neuritogenic activity of tetradecyl 2,3-dihydroxybenzoate is mediated through the insulin-like growth factor 1 receptor/phosphatidylinositol 3 kinase/mitogen-activated protein kinase signaling pathways

10Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Tetradecyl 2,3-dihydroxybenzoate (ABG-001) is a lead compound derived from neuritogenic gentisides. In the present study, we investigated the mechanism by which ABG-001 induces neurite outgrowth in a rat adrenal pheochromocytoma cell line (PC12). Inhibitors of insulin-like growth factor 1 (IGF-1) receptor, phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated kinase (ERK) 1/2 significantly decreased ABG-001-induced neurite outgrowth. Western blot analysis revealed that ABG-001 significantly induced phosphorylation of IGF-1 receptor, protein kinase B (Akt), ERK, and cAMP responsive element-binding protein (CREB). These effects were markedly reduced by addition of the corresponding inhibitors. We also found that ABG-001-induced neurite outgrowth was reduced by protein kinase C inhibitor as well as small-interfering RNA against the IGF-1 receptor. Furthermore, like ABG-001, IGF-1 also induced neurite outgrowth of PC12 cells, and low-dose nerve growth factor augmented the observed effects of ABG-001 on neurite outgrowth. These results suggest that ABG-001 targets the IGF-1 receptor and activates PI3K, mitogen-activated protein kinase, and their downstream signaling cascades to induce neurite outgrowth.

Cite

CITATION STYLE

APA

Tang, R., Gao, L., Kawatani, M., Chen, J., Cao, X., Osada, H., … Qi, J. (2015). Neuritogenic activity of tetradecyl 2,3-dihydroxybenzoate is mediated through the insulin-like growth factor 1 receptor/phosphatidylinositol 3 kinase/mitogen-activated protein kinase signaling pathways. Molecular Pharmacology, 88(2), 326–334. https://doi.org/10.1124/mol.115.097758

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free