The Patched1 (Ptch)-mediated inhibition of Smoothened (Smo) is still an open question. However, a direct Ptch/Smo interaction has been excluded, Smo modulators were identified, but the endogenous signal transmitting molecule remains undiscovered. Here, we demonstrate that calcitriol, the hormonally active form of vitamin D 3, is an excellent candidate for transmission of Ptch/Smo interaction. Our study reveals that Ptch expression is sufficient to release calcitriol from the cell and that calcitriol inhibits Smo action and ciliary translocation by acting on a site distinct from the 7-transmembrane domain or the cysteine-rich domain. Moreover calcitriol strongly synergizes with itraconazole (ITZ) in Smo inhibition, which did not result from elevated calcitriol bioavailability due to ITZ-mediated 24-hydroxylase inhibition but rather from a direct interaction of the compounds at the level of Smo. Together, we suggest that calcitriol represents a possible endogenous transmitter of Ptch/Smo interaction. Moreover calcitriol or calcitriol derivatives combined with ITZ might be a treatment option of Hedgehog-associated cancers.
CITATION STYLE
Linder, B., Weber, S., Dittmann, K., Adamski, J., Hahn, H., & Uhmann, A. (2015). A functional and putative physiological role of calcitriol in Patched1/Smoothened interaction. Journal of Biological Chemistry, 290(32), 19614–19628. https://doi.org/10.1074/jbc.M115.646141
Mendeley helps you to discover research relevant for your work.