Effective Removal of Methylene Blue on EuVO4/g-C3N4 Mesoporous Nanosheets via Coupling Adsorption and Photocatalysis

5Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

In this study, we first manufactured ultrathin g-C3N4 (CN) nanosheets by thermal etching and ultrasonic techniques. Then, EuVO4 (EV) nanoparticles were loaded onto CN nanosheets to form EuVO4/g-C3N4 heterojunctions (EVCs). The ultrathin and porous structure of the EVCs increased the specific surface area and reaction active sites. The formation of the heterostructure extended visible light absorption and accelerated the separation of charge carriers. These two factors were advantageous to promote the synergistic effect of adsorption and photocatalysis, and ultimately enhanced the adsorption capability and photocatalytic removal efficiency of methylene blue (MB). EVC-2 (2 wt% of EV) exhibited the highest adsorption and photocatalytic performance. Almost 100% of MB was eliminated via the adsorption–photocatalysis synergistic process over EVC-2. The MB adsorption capability of EVC-2 was 6.2 times that of CN, and the zero-orderreaction rate constant was 5 times that of CN. The MB adsorption on EVC-2 followed the pseudo second-order kinetics model and the adsorption isotherm data complied with the Langmuir isotherm model. The photocatalytic degradation data of MB on EVC-2 obeyed the zero-order kinetics equation in 0–10 min and abided by the first-order kinetics equation for10–30 min. This study provided a promising EVC heterojunctions with superior synergetic effect of adsorption and photocatalysis for the potential application in wastewater treatment.

Cite

CITATION STYLE

APA

Ran, X., Wang, L., Xiao, B., Lei, L., Zhu, J., Liu, Z., … Feng, J. (2022). Effective Removal of Methylene Blue on EuVO4/g-C3N4 Mesoporous Nanosheets via Coupling Adsorption and Photocatalysis. International Journal of Molecular Sciences, 23(17). https://doi.org/10.3390/ijms231710003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free