A Study of the Conditions of Energy Dissipation in Stepped Spillways with Λ-shaped step Using FLOW-3D

  • Mansoori A
  • Erfanian S
  • Khamchin Moghadam F
N/ACitations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

In the present study, energy dissipation was investigated in a specific type of stepped spillways. The purpose was to achieve the highest level of energy dissipation in downstream of the spillway. It was performed by providing a specific type of geometry for step as a great roughness. Here, steps were recognized as great roughness against flow. Their shape and number were designed in such a way that the maximum flow energy can be minimized in this stage, i.e. over steps before reaching to downstream. Accordingly, it can be stated that the highest energy dissipation rate will be obtained in the structure at downstream. Moreover, thereby, heavy costs imposed by designing and constructing stilling basin on project can be minimized. In this study, FLOW-3D was employed to analyse and obtain energy dissipation rate. The best geometry of the steps, through which the maximum energy dissipation can be achieved, was determined by reviewing related literature and inventing the proposed model in FLOW-3D. To evaluate the proposed method, analyses were performed using trial and error in mesh networks sizes as well as the mentioned methods and the results were compared to other studies. In other words, the most optimal state was obtained with Λ-shaped step at angel of 25 degree with respect to energy dissipation rate compare to smooth step.

Cite

CITATION STYLE

APA

Mansoori, A., Erfanian, S., & Khamchin Moghadam, F. (2017). A Study of the Conditions of Energy Dissipation in Stepped Spillways with Λ-shaped step Using FLOW-3D. Civil Engineering Journal, 3(10), 856. https://doi.org/10.28991/cej-030920

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free