As the virtual mirror of complex real-time business processes of organisations' underlying information systems, the workflow management system (WfMS) has emerged in recent decades as a new self-autonomous paradigm in the open, dynamic, distributed computing environment. In order to construct a trustworthy workflow management system (TWfMS), the design of a software behaviour trustworthiness measurement algorithm is an urgent task for researchers. Accompanying the trustworthiness mechanism, the measurement algorithm, with uncertain software behaviour trustworthiness information of the WfMS, should be resolved as an infrastructure. Based on the framework presented in our research prior to this paper, we firstly introduce a formal model for the WfMS trustworthiness measurement, with the main property reasoning based on calculus operators. Secondly, this paper proposes a novel measurement algorithm from the software behaviour entropy of calculus operators through the principle of maximum entropy (POME) and the data mining method. Thirdly, the trustworthiness measurement algorithm for incomplete software behaviour tests and runtime information is discussed and compared by means of a detailed explanation. Finally, we provide conclusions and discuss certain future research areas of the TWfMS.
CITATION STYLE
Han, Q. (2018). Trustworthiness measurement algorithm for TWfMS based on software behaviour entropy. Entropy, 20(3). https://doi.org/10.3390/e20030195
Mendeley helps you to discover research relevant for your work.