This work focuses on [O I] and [C II] emission towards NGC 6334 A, an embedded H+ region/PDR only observable at infrared or longer wavelengths. A geometry where nearly all the emission escapes out the side of the cloud facing the stars, such as Orion, is not applicable to this region. Instead, we find the geometry to be one where the H+ region and associated PDR is embedded in the molecular cloud. Constant density PDR calculations are presented which predict line intensities as a function of AV (or N(H)), hydrogen density (nH), and incident UV radiation field (G0). We find that a single component model with AV ~650 mag, nH = 5x10^5 cm-3, and G0 = 7x10^4 reproduces the observed [O I] and [C II] intensities, and that the low [O I] 63 to 146 micron ratio is due to line optical depth effects in the [O I] lines, produced by a large column density of atomic/molecular gas. We find that the effects of a density-law would increase our derived AV, while the effects of an asymmetric geometry would decrease AV, with the two effects largely canceling. We conclude that optically selected H+ regions adjacent to PDRs, such as Orion, likely have a different viewing angle or geometry than similar regions detected through IR observations. Overall, the theoretical calculations presented in this work have utility for any PDR embedded in a molecular cloud.
CITATION STYLE
Abel, N. P., Sarma, A. P., Troland, T. H., & Ferland, G. J. (2007). Optically Thick [O i ] and [C ii ] Emission toward NGC 6334A. The Astrophysical Journal, 662(2), 1024–1032. https://doi.org/10.1086/517987
Mendeley helps you to discover research relevant for your work.