Thymus Medulla Formation and Central Tolerance Are Restored in IKKα−/− Mice That Express an IKKα Transgene in Keratin 5+ Thymic Epithelial Cells

  • Lomada D
  • Liu B
  • Coghlan L
  • et al.
55Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

Medullary thymic epithelial cells (mTECs) play an essential role in establishing central tolerance due to their unique capacity to present a diverse array of tissue restricted Ags that induce clonal deletion of self-reactive thymocytes. One mTEC subset expresses keratin 5 (K5) and K14, but fails to bind Ulex europaeus agglutinin-1 (UEA-1) lectin. A distinct mTEC subset binds UEA-1 and expresses K8, but not K5 or K14. Development of both mTEC subsets requires activation of the noncanonical NF-κB pathway. In this study, we show that mTEC development is severely impaired and autoimmune manifestations occur in mice that are deficient in IκB kinase (IKK)α, a required intermediate in the noncanonical NF-κB signaling pathway. Introduction of an IKKα transgene driven by a K5 promoter restores the K5+K14+ mTEC subset in IKKα−/− mice. Unexpectedly, the K5-IKKα transgene also rescues the UEA-1 binding mTEC subset even though K5 expression is not detectable in these cells. In addition, expression of the K5-IKKα transgene ameliorates autoimmune symptoms in IKKα−/− mice. These data suggest that 1) medulla formation and central tolerance depend on activating the alternative NF-κB signaling pathway selectively in K5-expressing mTECs and 2) the K5-expressing subset either contains immediate precursors of UEA-1 binding cells or indirectly induces their development.

Cite

CITATION STYLE

APA

Lomada, D., Liu, B., Coghlan, L., Hu, Y., & Richie, E. R. (2007). Thymus Medulla Formation and Central Tolerance Are Restored in IKKα−/− Mice That Express an IKKα Transgene in Keratin 5+ Thymic Epithelial Cells. The Journal of Immunology, 178(2), 829–837. https://doi.org/10.4049/jimmunol.178.2.829

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free