Reproducibility of Aerobic Granules in Treating Low-Strength and Low-C/N-Ratio Wastewater and Associated Microbial Community Structure

10Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Long-term stability of the aerobic granular sludge system is essentially based on the microbial community structure of the biomass. In this study, the physicochemical and microbial characteristics of sludge and wastewater treatment performance were investigated regarding formation, maturation, and long-term maintenance of granules in two parallel sequencing batch reactors (SBR), R1 and R2, under identical conditions. The aim was to explore the linkage between microbial community structure of the aerobic granules, their long-term stability, as well as the reproducibility of granulation and long-term stability. The two reactors were operated with a COD concentration of 400 mg/L and a chemical oxygen demand to nitrogen (COD/N) ratio of 4:1 under anoxic–oxic conditions. It was found that although SVI30, sludge size, and distributions in R1 and R2 were different, aerobic granules were formed, and they maintained long-term stability in both reactors for 320 days, implying that a certain level of randomness of granulation does not affect the long-term stability and performance for COD and N removal. In addition, a significant reduction in the richness and diversity of microbial production was observed after the sludge was converted from inoculum or flocs to granules, but this did not negatively affect the performance of wastewater treatment. Among the predominant microbial species in aerobic granules, Zoogloea was identified as the most important bacteria present during the whole operation with the highest abundance, while Thauera was the important genus in the formation and maturation of the aerobic granules, but it cannot be maintained long-term due to the low food-to-microorganisms ratio (F/M) in the system. In addition, some species from Ohtaekwangia, Chryseobacterium, Taibaiella, and Tahibacter were found to proliferate strongly during long-term maintenance of aerobic granules. They may play an important role in the long-term stability of aerobic granules. These results demonstrate the reproducibility of granulation, the small influence of granulation on long-term stability, and the robustness of aerobic granulation for the removal of COD and N. Overall, our study contributes significantly to the understanding of microbial community structure for the long-term stability of aerobic granular sludge in the treatment of low-COD and low-COD/N-ratio wastewater in practice.

Cite

CITATION STYLE

APA

Zhang, H., Liu, Y. Q., Mao, S., Steinberg, C. E. W., Duan, W., & Chen, F. (2022). Reproducibility of Aerobic Granules in Treating Low-Strength and Low-C/N-Ratio Wastewater and Associated Microbial Community Structure. Processes, 10(3). https://doi.org/10.3390/pr10030444

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free