Pooling signals from vertically and non-vertically orientation-tuned disparity mechanisms in human stereopsis

17Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

To understand the role that orientation-tuned disparity-sensitive mechanisms play in the perception of stereoscopic depth, we measured stereothresholds using two sets of random-dot stimuli that produce identical stimulation of disparity mechanisms tuned to vertical orientation but dissimilar stimulation of disparity mechanisms tuned to non-vertical orientations. Either 1 or 1.5 D of astigmatic blur was simulated in the random-dot images presented to both eyes, using two axis configurations. In the parallel-axis conditions, the axis of simulated astigmatic blur was same in the two eyes (0, 45 or 135 o[rientation] deg). In the orthogonal-axis conditions, the axes of astigmatic blur were orthogonal in the two eyes (LE: 180, RE: 90; LE: 90, RE: 180; LE: 45, RE: 135; and LE: 135, RE: 45). Whereas the stimulation of disparity mechanisms tuned to near-vertical orientations should be similar in the oblique parallel- and orthogonal-axis conditions, the stimulation of non-vertically tuned disparity mechanisms should be dissimilar. Measured stereothresholds were higher in the orthogonal compared to the parallel-axis condition by factors of approximately 2 and 5, for 1 and 1.5 D of simulated oblique astigmatic blur, respectively. Further, for comparable magnitudes of simulated astigmatic blur, stereothresholds in the (LE: 180, RE: 90 and LE: 90, RE: 180) conditions were similar to those in the (LE: 45, RE: 135 and LE: 135, RE: 45) conditions. These results suggest that the computation of horizontal disparity includes substantial contributions from disparity mechanisms tuned to non-vertical orientations. Simulations using a modified version of a disparity-energy model [Qian, N., & Zhu, Y. (1997). Physiological computation of binocular disparity. Vision Research, 37, 1811-1827], show (1) that pooling across disparity mechanisms tuned to vertical and non-vertical orientations is required to account for our data and (2) that this pooling can provide the spatial resolution needed to encode spatially changing horizontal disparities. © 2005 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Patel, S. S., Bedell, H. E., & Sampat, P. (2006). Pooling signals from vertically and non-vertically orientation-tuned disparity mechanisms in human stereopsis. Vision Research, 46(1–2), 1–13. https://doi.org/10.1016/j.visres.2005.07.011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free