On the superimposition of Christoffel words

Citations of this article
Mendeley users who have this article in their library.


Initially stated in terms of Beatty sequences, the Fraenkel conjecture can be reformulated as follows: for a k-letter alphabet A, with a fixed k<3, there exists a unique balanced infinite word, up to letter permutations and shifts, that has mutually distinct letter frequencies. Motivated by the Fraenkel conjecture, we study in this paper whether two Christoffel words can be superimposed. Following from previous work on this conjecture using Beatty sequences, we give a necessary and sufficient condition for the superimposition of two Christoffel words having the same length, and more generally, of two arbitrary Christoffel words. Moreover, for any two superimposable Christoffel words, we give the number of different possible superimpositions and we prove that there exists a superimposition that works for any two superimposable Christoffel words. Finally, some new properties of Christoffel words are obtained as well as a geometric proof of a classic result concerning the money problem, using Christoffel words. © 2010 Elsevier B.V. All rights reserved.




Paquin, G., & Reutenauer, C. (2011). On the superimposition of Christoffel words. Theoretical Computer Science, 412(4–5), 402–418. https://doi.org/10.1016/j.tcs.2010.10.007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free