Mitigating the adverse impact of batch effects in sample pattern detection

13Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

Motivation: It is well known that batch effects exist in RNA-seq data and other profiling data. Although some methods do a good job adjusting for batch effects by modifying the data matrices, it is still difficult to remove the batch effects entirely. The remaining batch effect can cause artifacts in the detection of patterns in the data. Results: In this study, we consider the batch effect issue in the pattern detection among the samples, such as clustering, dimension reduction and construction of networks between subjects. Instead of adjusting the original data matrices, we design an adaptive method to directly adjust the dissimilarity matrix between samples. In simulation studies, the method achieved better results recovering true underlying clusters, compared to the leading batch effect adjustment method ComBat. In real data analysis, the method effectively corrected distance matrices and improved the performance of clustering algorithms. Availability and implementation: The R package is available at: https://github.com/tengfei-emory/ QuantNorm.

Cite

CITATION STYLE

APA

Fei, T., Zhang, T., Shi, W., & Yu, T. (2018). Mitigating the adverse impact of batch effects in sample pattern detection. Bioinformatics, 34(15), 2634–2641. https://doi.org/10.1093/bioinformatics/bty117

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free