Developing a synthetic methodology for the fabrication of hierarchically porous metal-organic monoliths that feature high surface area, low density and tunable porosity is imperative for mass transfer applications, including bulky molecule capture, heterogeneous catalysis and drug delivery. Here we report a versatile and facile synthetic route towards ultralight micro/mesoporous metal-organic aerogels based on the two-step gelation of metal-organic framework nanoparticles. Heating represents a key factor in the control of gelation versus crystallization of Al(III)-multicarboxylate systems. The porosity of the resulting metal-organic aerogels can be readily tuned, leading to the formation of well-ordered intraparticle micropores and aerogel-specific interparticle mesopores, thereby integrating the merits of both crystalline metal-organic frameworks and light aerogels. The hierarchical micro/mesoporosity of the Al-metal-organic aerogels is thoroughly evaluated by N 2 sorption. The good accessibility of the micro/mesopores is verified by vapour/dye uptake, and their potential for utilization as effective fibre-coating absorbents is tested in solid-phase microextraction analyses. © 2013 Macmillan Publishers Limited. All rights reserved.
CITATION STYLE
Li, L., Xiang, S., Cao, S., Zhang, J., Ouyang, G., Chen, L., & Su, C. Y. (2013). A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nature Communications, 4. https://doi.org/10.1038/ncomms2757
Mendeley helps you to discover research relevant for your work.