Numerical modeling and experimental investigation on the effect of low-salinity water flooding for enhanced oil recovery in carbonate reservoirs

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Numerous studies concluded that water injection with modified ionic content/salinity in sandstones would enhance the oil recovery factor due to some mechanisms. However, the effects of smart water on carbonated formations are still indeterminate due to a lack of experimental investigations and researches. This study investigates the effects of low-salinity (Low Sal) solutions and its ionic content on interfacial tension (IFT) reduction in one of the southwestern Iranian carbonated reservoirs. A set of organized tests are designed and performed to find each ion’s effects and total dissolved solids (TDS) on the candidate carbonated reservoir. A sequence of wettability and IFT (at reservoir temperature) tests are performed to observe the effects of controlling ions (sulfate, magnesium, calcium, and sodium) and different salinities on the main mechanisms (i.e., wettability alteration and IFT reduction). All IFT tests are performed at reservoir temperature (198 °F) to minimize the difference between reservoir and laboratory-observed alterations. In this paper, the effects of four different ions (SO42-, Ca2+, Mg2+, Na+) and total salinity TDS (40,000, 20,000, 5000 ppm) are investigated. From all obtained results, the best two conditions are applied in core flooding tests to obtain the relative permeability alterations using unsteady-state methods and Cydarex software. The final part is the simulation of the whole process using the Schlumberger Eclipse black oil simulator (E100, Ver. 2010) on the candidate reservoir sector. To conclude, at Low Sal (i.e., 5000 ppm), the sulfate ion increases sulfate concentration lower IFT, while in higher salinities, increasing sulfate ion increases IFT. Also, increasing calcium concentration at high TDS (i.e., 40,000 ppm) decreases the amount of wettability alteration. In comparison, in lower TDS values (20,000 and 5000 ppm), calcium shows a positive effect, and its concentration enhanced the alteration process. Using Low Sal solutions at water cut equal or below 10% lowers recovery rate during simulations while lowering the ultimate recovery of less than 5%.

Cite

CITATION STYLE

APA

Hosseini, E., Sarmadivaleh, M., & Mohammadnazar, D. (2021). Numerical modeling and experimental investigation on the effect of low-salinity water flooding for enhanced oil recovery in carbonate reservoirs. Journal of Petroleum Exploration and Production, 11(2), 925–947. https://doi.org/10.1007/s13202-020-01071-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free