A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection

38Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Schistosomiasis is responsible for a considerable global disease burden. This work aimed to improve the therapeutic outcome of the only available antischistosomal drug worldwide, praziquantel (PZQ), by incorporating it into a novel carrier, "solid lipid nanoparticles (SLNs)", to enhance its solubility, bioavailability and efficacy. A simple, cost-effective method was used to prepare SLN-PZQ. Results: Compared to market PZQ (M-PZQ), SLN-PZQ was more bioavailable, as denoted by higher serum concentrations in both normal and infected mice where elevated Ka, AUC0-24, Cmax, and t1/2e with a decrease in kel were demonstrated. The AUC0-24 for SLN-PZQ in normal and Schistosoma mansoni-infected groups was almost nine- and eight-fold higher, respectively, than that for M-PZQ in corresponding groups. In normal and S. mansoni-infected mice, SLN-PZQ was detectable in serum at 24 h, while M-PZQ completely vanished 8 h post-treatment. Additionally, enhanced absorption with extended residence time was recorded for SLN-PZQ. Compared to M-PZQ, SLN-PZQ revealed superior antischistosomal activity coupled with enhanced bioavailability in all treated groups where higher percentages of worm reduction were recorded with all dosages tested. This effect was especially evident at the lower dose levels. The ED95 of SLN-PZQ was 5.29-fold lower than that of M-PZQ, with a significantly higher reduction in both the hepatic and intestinal tissue egg loads of all treated groups and almost complete disappearance of immature deposited eggs (clearly evident at the low dose levels). Conclusions: SLN-PZQ demonstrated enhanced PZQ bioavailability and antischistosomal efficacy with a safe profile despite the prolonged residence in the systemic circulation.

Cite

CITATION STYLE

APA

Radwan, A., El-Lakkany, N. M., William, S., El-Feky, G. S., Al-Shorbagy, M. Y., Saleh, S., & Botros, S. (2019). A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection. Parasites and Vectors, 12(1). https://doi.org/10.1186/s13071-019-3563-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free