Criticality for the Gehring link problem

  • Cantarella J
  • Fu J
  • Kusner R
  • et al.
N/ACitations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

In 1974, Gehring posed the problem of minimizing the length of two linked curves separated by unit distance. This constraint can be viewed as a measure of thickness for links, and the ratio of length over thickness as the ropelength. In this paper we refine Gehring's problem to deal with links in a fixed link-homotopy class: we prove ropelength minimizers exist and introduce a theory of ropelength criticality. Our balance criterion is a set of necessary and sufficient conditions for criticality, based on a strengthened, infinite-dimensional version of the Kuhn--Tucker theorem. We use this to prove that every critical link is C^1 with finite total curvature. The balance criterion also allows us to explicitly describe critical configurations (and presumed minimizers) for many links including the Borromean rings. We also exhibit a surprising critical configuration for two clasped ropes: near their tips the curvature is unbounded and a small gap appears between the two components. These examples reveal the depth and richness hidden in Gehring's problem and our natural extension. Published in: Geom. Topol. 10 (2006) 2055-2115

Cite

CITATION STYLE

APA

Cantarella, J., Fu, J. H. G., Kusner, R., Sullivan, J. M., & Wrinkle, N. C. (2006). Criticality for the Gehring link problem. Geometry & Topology, 10(4), 2055–2115. https://doi.org/10.2140/gt.2006.10.2055

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free