Nucleic acid aptamers are short single-stranded DNA or RNA oligonucleotides selected from a random single-stranded nucleic acid library using systematic evolution of ligands by exponential enrichment technology. To allow them to bind to molecular targets with the same specificity and precision as that of antibodies, aptamers are folded into secondary or tertiary structures. However, compared to antibodies, aptamers are not immunogenic and are easier to synthesize. Furthermore, they are chemically modified, which protects them from degradation by nucleases. Hence, due to their stability and favorable targeting ability, aptamers are promising for the diagnosis and treatment of diseases. Ovarian cancer has the worst prognosis among all gynecological diseases and is usually diagnosed at the medium and advanced stages due to its nonspecific symptoms. Relapse is common, even if patients receive a standard therapeutic regimen including surgery and chemotherapy; simultaneously, drug resistance and adverse effects are reported in a several patients. Therefore, the safer and more efficient diagnostic and treatment method for ovarian cancer is imperative. Scientists have been trying to utilize aptamer technology for the early diagnosis and accurate treatment of ovarian cancer and some progress has been made in this field. This review discusses the screening of nucleic acid aptamers by targeting ovarian cancer cells and the application of aptamers in the diagnosis and treatment of ovarian cancer.
CITATION STYLE
Ruan, L., & Li, X. (2021, September 13). Applications of Aptamers in the Diagnosis and Treatment of Ovarian Cancer: Progress From 2016 to 2020. Frontiers in Genetics. Frontiers Media S.A. https://doi.org/10.3389/fgene.2021.683542
Mendeley helps you to discover research relevant for your work.