Nano-BiOBr photocatalysts were successfully prepared by hydrothermal synthesis using the ethylene glycol solution. The nano-BiOBr photocatalysts were characterized and investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-vis diffuse reflectance spectroscopy (UV-Vis DRS), and the catalytic ability toward photodegradation of rhodamine B (RhB) was also explored. The results showed that the crystallinity of the nano-BiOBr photocatalyst decreased with the increase of the concentration, while it increased with the amount of the applied deionized water. The morphology of the nano-BiOBr photocatalyst changed from microspheres to cubes and then to a mixture of microspheres and flakes with the increasing of the concentration and from microspheres to flakes with the addition of the deionized water. The results indicated that the concentration and solvents have an essential influence on the bandgap energy values of the nano-BiOBr photocatalyst, and photocatalyst showed an excellent photocatalyst activity toward photodegradation of RhB. The degradation yields of photocatalyst decreased with the increase of the concentration and increased with the addition of the deionized water. PL intensity of photocatalyst increased with the increase of the concentration and weakened with the addition of the deionized water.
CITATION STYLE
Wang, X., Zhang, F., Yang, Y., Zhang, Y., Liu, L., & Lei, W. (2020). Controllable Synthesis and Photocatalytic Activity of Nano-BiOBr Photocatalyst. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/1013075
Mendeley helps you to discover research relevant for your work.