Knowledge of the distribution and biodiversity of environmental bacteria and the ecosystem that influences them is crucial for predicting an ecosystem. However, bacterial culture methods can only analyze approximately 0.1% of the existing microorganisms, those that are readily cultured under laboratory conditions. By contrast, next-generation sequencing (NGS) has generally been known to obtain more diverse profiling of bacterial composition. We compared the bacterial communities using both a culture-dependent (MALDI-TOF) and culture-independent (NGS) methods. Environmental specimens were obtained from both freshwater and seawater. Water samples were also analyzed by both pyrosequencing and MiSeq sequencing, in order to select one NGS platform which could analyze comparatively more diverse microbiota. Bacterial distribution analyzed with MALDI-TOF showed no difference between the microbiota of freshwater and seawater, whereas the results analyzed with NGS distinguished between the two. The diversity indexes of MiSeq sequencing were higher than for Pyrosequencing. This indicated that MiSeq sequencing is capable of analyzing a comparatively wider diversity of bacteria. The genus of Flavobacterium and Planktophila were identified as being unique to freshwater, whereas EU801223 and OM43 were found in the seawater. Difference between the bacterial composition of the freshwater and seawater environments was identified by MiSeq sequencing analysis.
CITATION STYLE
Lee, S.-Y., & Eom, Y.-B. (2016). Analysis of Microbial Composition Associated with Freshwater and Seawater. Biomedical Science Letters, 22(4), 150–159. https://doi.org/10.15616/bsl.2016.22.4.150
Mendeley helps you to discover research relevant for your work.