The transcription factor PDX-1 plays a crucial role during pancreatic development and in the function of insulin-producing beta cells. Disruption of the pdx-1 gene in these cells induces overt diabetes in mice, and this gene is modified in several type 2 diabetic families. It is thus crucial to determine the molecular mechanisms involved in the regulation of PDX-1 expression and/or activation. We identified new proteins associated with PDX-1 by mass spectrometry. These proteins, Ku70 and Ku80, are regulatory subunits of DNA-dependent protein kinase (DNA-PK). We determined that the interaction between PDX-1 and Ku70 or Ku80 is dependent on the homeodomain of PDX-1. Most interestingly, we demonstrated in vitro that the DNA-PK phosphorylates PDX-1 on threonine 11. Although this residue is located in the transactivation domain, this phosphorylation does not seem to be implicated in the transcriptional activation of PDX-1. However, in response to radiation, which activates DNA-PK, a second form of the PDX-1 protein appears rapidly. This form is phosphorylated on threonine and seems to drive PDX-1 degradation by the proteosome. In correlation with this degradation, we observed a subsequent reduction in the activation of the insulin promoter and a decrease in PDX-1-mediated gene expression, i.e. glut2 and glucokinase. Our study demonstrates that radiation, through the activation of DNA-PK, may regulate PDX-1 protein expression. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Lebrun, P., Montminy, M. R., & Van Obberghen, E. (2005). Regulation of the pancreatic duodenal homeobox-1 protein by DNA-dependent protein kinase. Journal of Biological Chemistry, 280(46), 38203–38210. https://doi.org/10.1074/jbc.M504842200
Mendeley helps you to discover research relevant for your work.