The mechanisms for the development of diabetic cardiomyopathy remain largely unknown. Methylglyoxal (MG) can accumulate and promote inflammation and vascular damage in diabetes. We examined if overexpression of the MG-metabolizing enzyme glyoxalase 1 (GLO1) in macrophages and the vasculature could reduce MG-induced inflammation and prevent ventricular dysfunction in diabetes. Hyperglycemia increased circulating inflammatory markers in wild-type (WT) but not in GLO1-overexpressing mice. Endothelial cell number was reduced in WT-diabetic hearts compared with nondiabetic controls, whereas GLO1 overexpression preserved capillary density. Neuregulin production, endothelial nitric oxide synthase dimerization, and Bcl-2 expression in endothelial cells was maintained in the hearts of GLO1-diabetic mice and corresponded to less myocardial cell death compared with the WT-diabetic group. Lower receptor for advanced glycation end products and tumor necrosis factor-α (TNF-α) levels were also observed in GLO1-diabetic versus WT-diabetic mice. Over a period of 8 weeks of hyperglycemia, GLO1 overexpression delayed and limited the loss of cardiac function. In vitro, MG and TNF-α were shown to synergize in promoting endothelial cell death, which was associated with increased angiopoietin 2 expression and reduced Bcl-2 expression. These results suggest that MG in diabetes increases inflammation, leading to endothelial cell loss. This contributes to the development of diabetic cardiomyopathy and identifies MG-induced endothelial inflammation as a target for therapy.
CITATION STYLE
Vulesevic, B., McNeill, B., Giacco, F., Maeda, K., Blackburn, N. J. R., Brownlee, M., … Suuronen, E. J. (2016). Methylglyoxal-induced endothelial cell loss and inflammation contribute to the development of diabetic cardiomyopathy. Diabetes, 65(6), 1699–1713. https://doi.org/10.2337/db15-0568
Mendeley helps you to discover research relevant for your work.