The tricyclic diterpene fungal metabolite (+)-pleuromutilin has served as a starting point for antibiotic development. Semisynthetic modification of its glycolic acid subunit at C14 provided the first analogs fit for human use, and derivatization at C12 led to 12-epipleuromutilins with extended-spectrum antibacterial activity, including activity against Gram-negative pathogens. Given the inherent limitations of semisynthesis, however, accessing derivatives of (+)-pleuromutilin with full control over their structure presents an opportunity to develop derivatives with improved antibacterial activities. Here we disclose a modular synthesis of pleuromutilins by the convergent union of an enimide with a bifunctional iodoether. We illustrate our approach through synthesis of (+)-12-epimutilin, (+)-11,12-di-epi-mutilin, (+)-12-epi-pleuromutilin, (+)-11,12-di-epi-pleuromutilin, and (+)-pleuromutilin itself in 17 to 20 steps.
CITATION STYLE
Murphy, S. K., Zeng, M., & Herzon, S. B. (2017). A modular and enantioselective synthesis of the pleuromutilin antibiotics. Science, 356(6341), 956–959. https://doi.org/10.1126/science.aan0003
Mendeley helps you to discover research relevant for your work.