Immediate and delayed meteorological effects on covid-19 time-varying infectiousness in tropical cities

3Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

The novel coronavirus, which was first reported in Wuhan, China in December 2019, has been spreading globally at an unprecedented rate, leading to the virus being declared a global pandemic by the WHO on 12 March 2020. The clinical disease, COVID-19, associated with the pandemic is caused by the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Aside from the inherent transmission dynamics, environmental factors were found to be associated with COVID-19. However, most of the evidence documenting the association was from temperate locations. In this study, we examined the association between meteorological factors and the timevarying infectiousness of COVID-19 in the Philippines. We obtained the daily time series from 3 April 2020 to 2 September 2020 of COVID-19 confirmed cases from three major cities in the Philippines, namely Manila, Quezon, and Cebu. Same period city-specific daily average temperature (degrees Celsius;◦C), dew point (degrees Celsius;◦C), relative humidity (percent; %), air pressure (kilopascal; kPa), windspeed (meters per second; m/s) and visibility (kilometer; km) data were obtained from the National Oceanic and Atmospheric Administration—National Climatic Data Center. City-specific COVID-19-related detection and intervention measures such as reverse transcriptase polymerase chain reaction (RT-PCR) testing and community quarantine measures were extracted from online public resources. We estimated the time-varying reproduction number (Rt ) using the serial interval information sourced from the literature. The estimated Rt was used as an outcome variable for model fitting via a generalized additive model, while adjusting for relevant covariates. Results indicated that a same-day and the prior week’s air pressure was positively associated with an increase in Rt by 2.59 (95% CI: 1.25 to 3.94) and 2.26 (95% CI: 1.02 to 3.50), respectively. Same-day RT-PCR was associated with an increase in Rt, while the imposition of community quarantine measures resulted in a decrease in Rt . Our findings suggest that air pressure plays a role in the infectiousness of COVID19. The determination of the association of air pressure on infectiousness, aside from the testing frequency and community quarantine measures, may aide the current health systems in controlling the COVID-19 infectiousness by integrating such information into an early warning platform.

Cite

CITATION STYLE

APA

Seposo, X., Ng, C. F. S., & Madaniyazi, L. (2021). Immediate and delayed meteorological effects on covid-19 time-varying infectiousness in tropical cities. Atmosphere, 12(4). https://doi.org/10.3390/atmos12040513

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free