DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease

114Citations
Citations of this article
297Readers
Mendeley users who have this article in their library.

Abstract

The human genome contains ~30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ~9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.

Cite

CITATION STYLE

APA

Jeziorska, D. M., Murray, R. J. S., De Gobbi, M., Gaentzsch, R., Garrick, D., Ayyub, H., … Tufarelli, C. (2017). DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. Proceedings of the National Academy of Sciences of the United States of America, 114(36), E7526–E7535. https://doi.org/10.1073/pnas.1703087114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free