The effects of smooth pursuit adaptation on the gain of visuomotor transmission in monkeys

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Smooth pursuit eye movements are supported by visual-motor systems, where visual motion information is transformed into eye movement commands. Adaptation of the visuomotor systems for smooth pursuit is an important factor to maintain pursuit accuracy and high acuity vision. Short-term adaptation of initial pursuit gain can be produced experimentally using by repeated trials of a step-ramp tracking with two different velocities (double-step paradigm) that step-up (10-30°/s) or step-down (20-5°/s). It is also known that visuomotor gain during smooth pursuit is regulated by a dynamic gain control mechanism by showing that eye velocity evoked by a target perturbation during pursuit increases bidirectionally when ongoing pursuit velocity is higher. However, it remains uncertain how smooth pursuit adaptation alters the gain of visuomotor transmission. Therefore, a single cycle of sinusoidal motion (2.5 Hz, ± 10°/s) was introduced during step-ramp tracking pre- and post-adaptation to determine whether smooth pursuit adaptation affects the perturbation response. The results showed that pursuit adaptation had a significant effect on the perturbation response that was specific to the adapted direction. These results indicate that there might be different visuomotor mechanisms between adaptation and dynamic gain control. Furthermore, smooth pursuit adaptation altered not only the gain of the perturbation response, but also the gain slope (regression curve) at different target velocities (5, 10 and 15°/s). Therefore, pursuit adaptation could affect the dynamic regulation of the visuomotor gain at different pursuit velocities. © 2013 Ono.

Cite

CITATION STYLE

APA

Ono, S. (2013). The effects of smooth pursuit adaptation on the gain of visuomotor transmission in monkeys. Frontiers in Systems Neuroscience, 7(DEC). https://doi.org/10.3389/fnsys.2013.00119

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free