Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs)

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Imipenem is a carbapenem antibiotic. However, Imipenem could not be marketed owing to its instability and nephrotoxicity until cilastatin, an inhibitor of renal dehydropeptidase-I (DHP-I), was developed. In present study, the potential roles of renal organic anion transporters (OATs) in alleviating the nephrotoxicity of imipenem by cilastatin were investigated in vitro and in rabbits. Our results indicated that imipenem and cilastatin were substrates of hOAT1 and hOAT3. Cilastatin inhibited hOAT1/3-mediated transport of imipenem with IC50 values comparable to the clinical concentration, suggesting the potential to cause a clinical drug–drug interaction (DDI). Moreover, imipenem exhibited hOAT1/3-dependent cytotoxicity, which was alleviated by cilastatin and probenecid. Furthermore, cilastatin and probenecid ameliorated imipenem-induced rabbit acute kidney injury, and reduced the renal secretion of imipenem. Cilastatin and probenecid inhibited intracellular accumulation of imipenem and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells. Renal OATs, besides DHP-I, was also the target of interaction between imipenem and cilastatin, and contributed to the nephrotoxicity of imipenem. This therefore gives in part the explanation about the mechanism by which cilastatin protected against imipenem-induced nephrotoxicity. Thus, OATs can potentially be used as a therapeutic target to avoid the renal adverse reaction of imipenem in clinic.

Cite

CITATION STYLE

APA

Huo, X., Meng, Q., Wang, C., Zhu, Y., Liu, Z., Ma, X., … Liu, K. (2019). Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). Acta Pharmaceutica Sinica B, 9(5), 986–996. https://doi.org/10.1016/j.apsb.2019.02.005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free