An important level at which the expression of programmed cell death (PCD) genes is regulated is alternative splicing. Our previous work identified an intronic splicing regulatory element in caspase-2 (casp-2) gene. This 100-nucleotide intronic element, In100, consists of an upstream region containing a decoy 3′ splice site and a downstream region containing binding sites for splicing repressor PTB. Based on the signal of In100 element in casp-2, we have detected the In100-like sequences as a family of sequence elements associated with alternative splicing in the human genome by using computational and experimental approaches. A survey of human genome reveals the presence of more than four thousand In100-like elements in 2757 genes. These In100-like elements tend to locate more frequent in intronic regions than exonic regions. EST analyses indicate that the presence of In100-like elements correlates with the skipping of their immediate upstream exons, with 526 genes showing exon skipping in such a manner. In addition, In100-like elements are found in several human caspase genes near exons encoding the caspase active domain. RT-PCR experiments show that these caspase genes indeed undergo alternative splicing in a pattern predicted to affect their functional activity. Together, these results suggest that the In100-like elements represent a family of intronic signals for alternative splicing in the human genome. © 2007 Havlioglu et al.
CITATION STYLE
Havlioglu, N., Wang, J., Fushimi, K., Vibranovski, M. D., Kan, Z., Gish, W., … Wu, J. Y. (2007). An Intronic Signal for Alternative Splicing in the Human Genome. PLoS ONE, 2(11). https://doi.org/10.1371/journal.pone.0001246
Mendeley helps you to discover research relevant for your work.