Genetic deletion of the adenosine A1 receptor (A1AR) increased renal injury following ischemia-reperfusion injury suggesting that receptor activation is protective in vivo. Here we tested this hypothesis by expressing the human-A 1 AR in A1AR knockout mice. Renal ischemia-reperfusion was induced in knockout mice 2 days after intrarenal injection of saline or a lentivirus encoding enhanced green fluorescent protein (EGFP) or EGFP-human-A 1AR. We found that the latter procedure induced a robust expression of the reporter protein in the kidneys of knockout mice. Mice with kidney-specific human-A1AR reconstitution had significantly lower plasma creatinine, tubular necrosis, apoptosis, and tubular inflammation as evidenced by decreased leukocyte infiltration, pro-inflammatory cytokine, and intercellular adhesion molecule-1 expression in the kidney following injury compared to mice injected with saline or the control lentivirus. Additionally, there were marked disruptions of the proximal tubule epithelial filamentous (F)-actin cytoskeleton in both sets of control mice upon renal injury, whereas the reconstituted mice had better preservation of the renal tubule actin cytoskeleton, which co-localized with the human-A1ARs. Consistent with reduced renal injury, there was a significant increase in heat shock protein-27 expression, also co-localizing with the preserved F-actin cytoskeleton. Our findings suggest that selective expression of cytoprotective A1ARs in the kidney can attenuate renal injury. © 2009 International Society of Nephrology.
CITATION STYLE
Kim, M., Chen, S. W. C., Park, S. W., Kim, M., D’agati, V. D., Yang, J., & Lee, H. T. (2009). Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury. Kidney International, 75(8), 809–823. https://doi.org/10.1038/ki.2008.699
Mendeley helps you to discover research relevant for your work.