With the increasing availability of Cooperative Intelligent Transport Systems, the Local Dynamic Map (LDM) is becoming a key technology for integrating static, temporary, and dynamic information in a geographical context. However, existing ideas do not leverage the full potential of the LDM approach, as an LDM contains streaming data and varying implicit information which are not captured by current models. We aim to provide a semantically enriched LDM that applies Semantic Web technologies, in particular ontologies, in combination with spatial stream databases. This allows us to define an enhanced world model, to derive model properties, to infer new information, and to offer expressive query capabilities over streams. We introduce our envisioned architecture which includes an LDM ontology, an integration and annotation framework, and a stream query answering component. We also sketch three application scenarios that illustrate the usability and benefits of our approach, thus we provide an in-depth validation of the scenarios in an experimental prototype.
CITATION STYLE
Eiter, T., Füreder, H., Kasslatter, F., Parreira, J. X., & Schneider, P. (2019). Towards a Semantically Enriched Local Dynamic Map. International Journal of Intelligent Transportation Systems Research, 17(1), 32–48. https://doi.org/10.1007/s13177-018-0154-x
Mendeley helps you to discover research relevant for your work.