Effect of welding speed on defect features and mechanical performance of friction stir lap welded 7B04 aluminum alloy

17Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Friction stir lap welding of 7B04 aluminum alloy was conducted in the present paper, and the effect of welding speed on the defect features and mechanical performance of lap joints was investigated. The results indicate that the hook defect at the advancing side (AS) can reduce the effective thickness of the top sheet, and the sheet thinning level is gradually lowered by increasing the welding speed. The cold lap defect at the retreating side (RS) can result in effective thickness reduction in both top and bottom sheets, and the total height of the cold lap defect varies slightly with the welding speed. The tensile properties of the lap joints are largely related to the sheet thinning levels caused by the defects. The fracture strength of AS-loaded lap joints is progressively increased with increasing welding speed, while that of RS-loaded lap joints evolves slightly with welding speed. It is found that the affecting characteristic of loading configuration on the joint performance is also dependent on the welding speed. At lower welding speeds, the AS-loaded lap joints show lower fracture strength than the RS-loaded lap joints. When the welding speed is high, the AS-loaded lap joints present superior tensile properties to RS-loaded lap joints.

Cite

CITATION STYLE

APA

Zhang, H., Wang, M., Zhang, X., Zhu, Z., Yu, T., & Yang, G. (2016). Effect of welding speed on defect features and mechanical performance of friction stir lap welded 7B04 aluminum alloy. Metals, 6(4). https://doi.org/10.3390/met6040087

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free