Native Ambient Mass Spectrometry Imaging of Ligand-Bound and Metal-Bound Proteins in Rat Brain

30Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Label-free spatial mapping of the noncovalent interactions of proteins in their tissue environment has the potential to revolutionize life sciences research by providing opportunities for the interrogation of disease progression, drug interactions, and structural and molecular biology more broadly. Here, we demonstrate mass spectrometry imaging of endogenous intact noncovalent protein-ligand complexes in rat brain. The spatial distributions of a range of ligand-bound and metal-bound proteins were mapped in thin tissue sections by use of nanospray-desorption electrospray ionization. Proteins were identified directly from the tissue by top-down mass spectrometry. Three GDP-binding proteins (ADP ribosylation factor ARF3, ARF1, and GTPase Ran) were detected, identified, and imaged in their ligand-bound form. The nature of the ligand was confirmed by multiple rounds of tandem mass spectrometry. In addition, the metal-binding proteins parvalbumin-α and carbonic anhydrase 2 were detected, identified, and imaged in their native form, i.e., parvalbumin-α + 2Ca2+ and carbonic anhydrase + Zn2+. GTPase Ran was detected with both GDP and Mg2+ bound. Several natively monomeric proteins displaying distinct spatial distributions were also identified by top-down mass spectrometry. Protein mass spectrometry imaging was achieved at a spatial resolution of 200 μm.

Cite

CITATION STYLE

APA

Sisley, E. K., Hale, O. J., Styles, I. B., & Cooper, H. J. (2022). Native Ambient Mass Spectrometry Imaging of Ligand-Bound and Metal-Bound Proteins in Rat Brain. Journal of the American Chemical Society, 144(5), 2120–2128. https://doi.org/10.1021/jacs.1c10032

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free