Atmospheric methane concentrations decreased during the early to middle Holocene; however, the governing mechanisms remain controversial. Although it has been suggested that the mid-Holocene minimum methane emissions are associated with hydrological change, direct evidence is lacking. Here we report a new independent approach, linking hydrological change in peat sediments from the Tibetan Plateau to changes in archaeal diether concentrations and diploptene 13 C values as tracers for methanogenesis and methanotrophy, respectively. A minimum in inferred methanogenesis occurred during the mid-Holocene, which, locally, corresponds with the driest conditions of the Holocene, reflecting a minimum in Asian monsoon precipitation. The close coupling between precipitation and methanogenesis is validated by climate simulations, which also suggest a regionally widespread impact. Importantly, the minimum in methanogenesis is associated with a maximum in methanotrophy. Therefore, methane emissions in the Tibetan Plateau region were apparently lower during the mid-Holocene and partially controlled by interactions of large-scale atmospheric circulation. © 2014 Macmillan Publishers Limited. All rights reserved.
CITATION STYLE
Zheng, Y., Singarayer, J. S., Cheng, P., Yu, X., Liu, Z., Valdes, P. J., & Pancost, R. D. (2014). Holocene variations in peatland methane cycling associated with the Asian summer monsoon system. Nature Communications, 5. https://doi.org/10.1038/ncomms5631
Mendeley helps you to discover research relevant for your work.