Denumerable state semi-Markov decision processes with unbounded costs, average cost criterion

25Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

This paper establishes a rather complete optimality theory for the average cost semi-Markov decision model with a denumerable state space, compact metric action sets and unbounded one-step costs for the case where the underlying Markov chains have a single ergotic set. Under a condition which, roughly speaking, requires the existence of a finite set such that the supremum over all stationary policies of the expected time and the total expected absolute cost incurred until the first return to this set are finite for any starting state, we shall verify the existence of a finite solution to the average costs optimality equation and the existence of an average cost optimal stationary policy. © 1979.

Cite

CITATION STYLE

APA

Federgruen, A., Hordijk, A., & Tijms, H. C. (1979). Denumerable state semi-Markov decision processes with unbounded costs, average cost criterion. Stochastic Processes and Their Applications, 9(2), 223–235. https://doi.org/10.1016/0304-4149(79)90034-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free