The ATP synthase is under a number of mechanisms of regulation. The chloroplast ATPase has a unique mode of regulation in which activity is controlled by the redox state in the organelle. This mode of regulation is determined by a small unique region within the γ-subunit and this region contains two cysteine residues. Introduction of this region within the yeast γ-subunit causes a defect in oxidative phosphorylation. Oxidative phosphorylation is restored if the cysteine residues are replaced with serine. Biochemical analysis of the chimeric mitochondrial ATPase indicates that the ATP synthase is not largely altered with the cysteine residues in either the oxidized or reduced states. However, the level and activity of cytochrome c oxidase are decreased by about 90%, whereas that of NADH dehydrogenase and cytochrome c reductase are unchanged as compared with the wild-type enzymes. The level and activity of cytochrome c oxidase are restored with replacement of the cysteine residues with serine in the regulatory region. These results indicate that the chimeric ATP synthase containing cysteine, but not serine, decreases the expression or assembly of cytochrome c oxidase with little effect on the activity of the ATP synthase. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Shen, H., Eric Walters, D., & Mueller, D. M. (2008). Introduction of the chloroplast redox regulatory region in the yeast ATP synthase impairs cytochrome c oxidase. Journal of Biological Chemistry, 283(47), 32937–32943. https://doi.org/10.1074/jbc.M805310200
Mendeley helps you to discover research relevant for your work.