Background: Real-world evidence is a valuable source of information in healthcare. This study describes the challenges and successes during algorithm development to identify cancer cohorts and multi-agent chemotherapy regimens from claims data to perform a comparative effectiveness analysis of granulocyte colony stimulating factor (G-CSF) use. Methods: Using the Biologics and Biosimilars Collective Intelligence Consortium’s Distributed Research Network, we iteratively developed and tested a de novo algorithm to accurately identify patients by cancer diagnosis, then extract chemotherapy and G-CSF administrations for a retrospective study of prophylactic G-CSF. Results: After identifying patients with cancer and subsequent chemotherapy exposures, we observed only 12% of patients with cancer received chemotherapy, which is fewer than expected based on prior analyses. Therefore, we reversed the initial inclusion criteria to identify chemotherapy receipt, then prior cancer diagnosis, which increased the number of patients from 2,814 to 3,645, or 68% of patients receiving chemotherapy had diagnoses of interest. Additionally, we excluded patients with cancer diagnoses that differed from those of interest in the 183 days before the index date of G-CSF receipt, including early-stage cancers without G-CSF or chemotherapy exposure. By removing this criterion, we retained 77 patients who were previously excluded. Finally, we incorporated a 5-day window to identify all chemotherapy drugs administered (excluding oral prednisone and methotrexate, as these medications may be used for other non-malignant conditions) as patients may fill oral prescriptions days to weeks prior to infusion. This increased the number of patients with chemotherapy exposures of interest to 6,010. The final cohort of included patients, based on G-CSF exposure, increased from 420 from the initial algorithm to 886 using the final algorithm. Conclusions: Medications used for multiple indications, sensitivity and specificity of administrative codes, and relative timing of medication exposure must all be evaluated to identify patient cohorts receiving chemotherapy from claims data.
CITATION STYLE
Lockhart, C. M., McDermott, C. L., Mendelsohn, A. B., Marshall, J., McBride, A., Yee, G., … Pawloski, P. A. (2023). Identification of cancer chemotherapy regimens and patient cohorts in administrative claims: challenges, opportunities, and a proposed algorithm. Journal of Medical Economics, 26(1), 403–410. https://doi.org/10.1080/13696998.2023.2187196
Mendeley helps you to discover research relevant for your work.