Climate-Resilient Robotic Facades: Architectural Strategies to Improve Thermal Comfort in Outdoor Urban Environments using Robotic Assembly

9Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

In the context of dense urban environments and climate change, pedestrians’ thermal experience plays an increasingly significant role in people’s health and well-being. In this research, the authors combine the fields of architecture, climate-responsive design, and robotic fabrication with the goal of investigating strategies to improve outdoor thermal comfort for pedestrians in cities with frequent extreme heat events. Based on a case study in the city of Munich, this paper presents findings into the technological approaches and methods for location-specific climate-resilient brick facades using robotic assembly. To achieve this goal, different bricklaying patterns were investigated to create a self-shading effect and thus reduce solar radiation and ultimately achieve an improved thermal condition for pedestrians moving along urban facades at street level. Using computer-aided microclimate simulation, generic self-shading brick pattern designs were tailored to highly location-specific microclimate requirements. Robotic assembly technology was used to produce such tailored, non-standard brickwork facades. The results of this research led to a data-informed design process with a demonstrator object being realized at 1:1 scale with a height of 2 m and a length of 3 m using a collaborative robot on site. Thermal measurements on the built demonstrator provided indications of reduced surface temperatures despite high solar radiation and thus validated the location-specific self-shading effects according to solar radiation simulation.

Cite

CITATION STYLE

APA

Fleckenstein, J., Molter, P. L., Chokhachian, A., & Dörfler, K. (2022). Climate-Resilient Robotic Facades: Architectural Strategies to Improve Thermal Comfort in Outdoor Urban Environments using Robotic Assembly. Frontiers in Built Environment, 8. https://doi.org/10.3389/fbuil.2022.856871

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free