Uniformity attentive learning-based siamese network for person re-identification

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Person re-identification (Re-ID) has a problem that makes learning difficult such as misalignment and occlusion. To solve these problems, it is important to focus on robust features in intra-class variation. Existing attention-based Re-ID methods focus only on common features without considering distinctive features. In this paper, we present a novel attentive learning-based Siamese network for person Re-ID. Unlike existing methods, we designed an attention module and attention loss using the properties of the Siamese network to concentrate attention on common and distinctive features. The attention module consists of channel attention to select important channels and encoder-decoder attention to observe the whole body shape. We modified the triplet loss into an attention loss, called uniformity loss. The uniformity loss generates a unique attention map, which focuses on both common and discriminative features. Extensive experiments show that the proposed network compares favorably to the state-of-the-art methods on three large-scale benchmarks including Market-1501, CUHK03 and DukeMTMC-ReID datasets.

Cite

CITATION STYLE

APA

Jeong, D., Park, H., Shin, J., Kang, D., & Paik, J. (2020). Uniformity attentive learning-based siamese network for person re-identification. Sensors (Switzerland), 20(12). https://doi.org/10.3390/s20123603

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free