Novel adjuvant nano-vaccine induced immune response against Acinetobacter baumannii

12Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Developing adjuvant vaccines to combat rising multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) infections is a promising and cost-effective approach. The aim of this analysis was to construct a pDNA-CPG C274-adjuvant nano-vaccine and investigate its immunogenicity and protection in BALB/c mice. The CPG ODN C274 adjuvant was chemically synthesized and cloned into pcDNA3.1(+), and the cloning was verified using PCR and BamHI/EcoRV restriction enzyme digestion. Then, utilizing a complex coacervation approach, pDNA-CPG C274 was encapsulated by chitosan (CS) nanoparticles (NPs). TEM and DLS are used to explore the properties of the pDNA/CSNP complex. TLR-9 pathway activation was investigated in human HEK-293 and RAW 264.7 mouse cells. The vaccine's immunogenicity and immune-protective effectiveness were investigated in BALB/c mice. The pDNA-CPG C274/CSNPs were small (mean size 79.21 ± 0.23 nm), positively charged (+ 38.87 mV), and appeared to be spherical. A continuous slow release pattern was achieved. TLR-9 activation was greatest in the mouse model with CpG ODN (C274) at concentrations of 5 and 10 μg/ml with 56% and 55%, respectively (**P < 0.01). However, in HEK-293 human cells, by increasing the concentration of CpG ODN (C274) from 1 to 50 μg/ml, the activation rate of TLR-9 also increased, so that the highest activation rate (81%) was obtained at the concentration of 50 μg/ml (***P < 0.001). pDNA-CPG C274/CSNPs immunized BALB/c mice produced increased amounts of total-IgG, as well as IFN-γ and IL-1B in serum samples, compared to non-encapsulated pDNA-CPG C274. Furthermore, liver and lung injuries, as well as bacterial loads in the liver, lung, and blood, were reduced, and BALB/c mice immunized with pDNA-CPG C274/CSNPs showed potent protection (50–75%) against acute fatal Intraperitoneal A. baumannii challenge. pDNA-CPG C274/CSNPs evoked total-IgG antibodies, Th1 cellular immunity, and the TLR-9 pathway, as well as protection against an acute fatal A. baumannii challenge. Our findings suggest that this nano-vaccine is a promising approach for avoiding A. baumannii infection when used as a powerful adjuvant.

Cite

CITATION STYLE

APA

Piri-Gharaghie, T., Doosti, A., & Mirzaei, S. A. (2023). Novel adjuvant nano-vaccine induced immune response against Acinetobacter baumannii. AMB Express, 13(1). https://doi.org/10.1186/s13568-023-01531-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free