MoS2 surface structure tailoring via carbonaceous promoter

35Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Atomically thin semiconducting transition-metal dichalcogenides have been attracting lots of attentions, particularly, molybdenum disulfide (MoS2) monolayers show promising applications in field effect transistors, optoelectronics and valleytronics. However, the controlled synthesis of highly crystalline MoS2 remain a challenge especially the systematic approach to manipulate its structure and morphology. Herein, we report a method for controlled synthesis of highly crystalline MoS2 by using chemical vapor deposition method with carbonaceous materials as growth promoter. A uniform and highly crystalline MoS2 monolayer with the grain size close to 40 μm was achieved. Furthermore, we extend the method to the manipulation of MoS2 morphology, flower-shape vertical grown MoS2 layers were obtained on growth promoting substrates. This simple approach allows an easy access of highly crystalline MoS2 layers with morphology tuned in a controllable manner. Moreover, the flower-shape MoS2 grown on graphene oxide film used as an anode material for lithium-ion batteries showed excellent electrochemical performance.

Cite

CITATION STYLE

APA

Shi, Y., Li, H., Wong, J. I., Zhang, X., Wang, Y., Song, H., & Yang, H. Y. (2015). MoS2 surface structure tailoring via carbonaceous promoter. Scientific Reports, 5. https://doi.org/10.1038/srep10378

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free